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‘ Dark matter lighting up the stars I

a keV sterile neutrino
e Relic keV sterile neutrinos: the astrophysical hints

— can be dark matter

— can explain the pulsar kicks

— eliminates problems with CDM, agrees with VLT observations
(warm is hot!)

— three sterile neutrinos: dark matter + baryogenesis (by neutrino
oscillations)

— Lighting up the first stars: early star formation and reionization by
keV sterile neutrinos [Biermann,Kusenko, PRL, in press]

e |Implications for particle physics
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‘ Dark matter: what is it? I

Can take guesses based on...

e ...compelling theoretical ideas
e ...simplicity

e ...observational clues
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Dark matter: a simple (minimalist) solution

Need one particle = add just one particle
If a fermion, must be gauge singlet (anomalies)
Interactions only through mixing with neutrinos

= sterile neutrino

Small mass and, therefore, stability! No symmetries required.
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Sterile neutrinos with a small mixing to active neutrinos

(1)

The almost-sterile neutrino, |v/5) was never in equilibrium. Production of
9 could take place through oscillations.

|lv1) = cos O|ve) — sin O|v,)
|lv2) = sin@|v.) + cos O|v;)

The coupling of v5 to weak currents is also suppressed, and o o< sin” 6.
The probability of v, — v conversion in presence of matter is

1 2
) sin” 20,,, (2)

Py =5 |1+ (

>\osc
2

where A\osc is the oscillation length, and \g is the scattering length.
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‘ Sterile neutrinos in the early universe |

Sterile neutrinos are produced in primordial plasma through

e off-resonance oscillations. [Dodelson, Widrow; Abazajian, Fuller, Dolgov,
Hansen.. ]

e oscillations on resonance, if the lepton asymmetry is non-negligible
[Fuller, Shi]
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Mixing is suppressed at high temperature [Dolgov, Barbiieri; Stodolsky]

G299 — (Am?/2p)?sin® 20 3)
" (Am?2/2p)?sin® 20 + (Am?2/2p cos 20 — V (T))?’

For small angles,

) sin 260
sin 20, = 5 (4)
1+0.79 x 10—13(T'/MeV)6(keV*/Am?)

Production of sterile neutrinos peaks at temperature

Am2 1/6
Toax = 130 MeV ( 2)
keV
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[Dodelson, Widrow; Dolgov, Hansen; Fuller, Shi; Abazajian, Fuller, Patel]
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‘ Lyman-« forest: a look at the small-scale structure |

Flux
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The resulting density of relic o

. . . . r;! [
sterile neutrinos in conventional g dark matter
cosmology, in the absence of a
large lepton asymmetry:

SiIl2 20 m 2 Yett  Tiel0 ““‘1‘2&09‘ T le08  leO7
Oy, ~ 0.3 | ———— - ane
10—8 keV

Lyman-a forest clouds show
significant structure on small
scales. Dark matter must be cold
enough to preserve this structure.
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‘ Radiative decay I

Sterile neutrino in the mass range of interest have lifetimes longer than
the age of the universe, but they do decay:

\ Vo

Photons have energies m/2: X-rays. Large lumps of dark matter emit some
X-rays.
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‘ X-ray observations I

Virgo cluster image from XMM-Newton

Aspen ’06
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‘ Chandra, XMM-Newton can see photons: v, — v,y I

10
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‘ Cold or warm dark matter? I

CDM works well, but...
Potential problems with cold dark matter:

e too much structure on small scales: the self-similar spectrum predicts
~ 10 small “satellite galaxies” per galaxy.

e core overdensity, cuspy density profile may be in conflict with observations

[B. Moore, et al., Ap. J. 524, L19 (1999)]
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Warm dark matter (m =~

the satellites:

the cusp:

1 — 5 keV) can offer a solution

[Moore]

[Moore]

Aspen ’06
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Some CDM problems eliminated by WDM

e overproduction (by an order of magnitude!) of the satellite halos for
galaxies of the size of Milky Way.

e WDM can reduce the number of halos in low-density voids. [Peebles]

e observed densities of the galactic cores (from the rotation curves) are
lower than what is predicted based on the ACDM power spectrum.
[Dalcanton et al.; van den Bosch et al.; Moore; Abazajian]

e The “angular-momentum problem”: in CDM halos, gas should cool
at very early times into small halos and lead to massive low-angular-
momentum gas cores in galaxies. [Dolgov]

e disk-dominated ( pure-disk) galaxies are observed, but not produced in
CDM because of high merger rate. [Governato et al.; Kormendy et al.]
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‘ Emission of sterile neutrinos from a supernova I

e Sterile neutrino emission from a supernova is anisotropic

e Sterile neutrinos with masses and mixing angles consistent with dark
matter can explain the pulsar velocities

[AK, Segre; Fuller, AK, Mocioiu, Pascoli]
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‘ The pulsar velocities. |

Pulsars have large velocities, (v) ~ 250 — 450 km/s.
[Cordes et al.; Hansen, Phinney; Kulkarni et al.; Lyne et al. ]
A significant population with v > 700 km /s,

about 15 % have v > 1000 km/s, up to 1600 km /s.
[Arzoumanian et al.; Thorsett et al. |
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A very fast pulsar in Guitar Nebula

HST, December 1994 HST, December 2001
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Map of pulsar velocities
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Proposed explanations:

e asymmetric collapse [Shklovskii] (small kick)
e evolution of close binaries [Gott, Gunn, Ostriker| (not enough)

e acceleration by EM radiation [Harrison, Tademaru] (kick small, predicted
polarization not observed)

e asymmetry in EW processes that produce neutrinos [Chugai; Dorofeev,
Rodinov, Ternov] (asymmetry washed out)
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Asymmetric collapse
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“...the most extreme asymmetric collapses
do not produce final neutron star velocities above 200km/s" [Fryer '03]
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‘ Supernova neutrinos I

Nuclear reactions in stars lead to a formation of a heavy iron core. When

it reaches M ~ 1.4M, the pressure can no longer support gravity. =
collapse.

Energy released:

G n M?2
AE ~ N RFe core _ 10538Pg

99% of this energy is emitted in neutrinos
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‘ Pulsar kicks from neutrino emission? I

Pulsar with v ~ 500 km/s has momentum

Mgv ~ 10* gem/s

SN energy released: 10°° erg = in neutrinos. Thus, the total neutrino
momentum Is

Py;total ~ 1043 gcm/s

[ a 1% asymmetry in the distribution of neutrinos ]

Is sufficient to explain the pulsar kick velocities
But what can cause the asymmetry??
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‘ Magnetic field? |

Neutron stars have large magnetic fields. A typical pulsar has surface
magnetic field B ~ 10'% — 10"° G.

Recent discovery of soft gamma repeaters and their identification as
magnetars

= some neutron stars have surface magnetic fields as high as
10'° — 10'° G.

= magnetic fields inside can be 10° — 10'° G.

Neutrino magnetic moments are negligible, but the scattering of neutrinos
off polarized electrons and nucleons is affected by the magnetic field.
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‘ Core collapse supernova I

Onset of the collapse: ¢t = 0

Aspen ’06
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‘ Core collapse supernova I

Shock formation and “neutronization burst”: ¢t =1 — 10 ms

PNS

Protoneutron star formed. Neutrinos are trapped. The shock wave breaks
up nuclei, and the initial neutrino come out (a few %).
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‘ Core collapse supernova I

Thermal cooling: ¢t =10 — 15 s

Most of the neutrinos emitted during the cooling stage.
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Resonant active-sterile neutrino conversions in matter

Matter potential:

Vivs) = 0
Viv) = —V(5)=Vo(3Y,—1+4Y,)
k-B
Ve, = —V(.,)=Vo(Y.—1+2Y,,) + ch

z eG, <3Ne) 1/3
cC =
L V2 \ w
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The resonance condition is

2 mZ

ZZ’ cos 20;; + V(v;) = 2—1;:7 cos 20;; + V (v;) (5)

The resonance is afFected by the magnetic field and occurs at different
density depending on k - B, that is depending on direction.

As a result, the active neutrinos convert to sterile neutrinos at different
depths on different sides of the start.

Temperature is a function of . The energy of an escaping sterile neutrino
depends on the temperature of at the point it was produced.
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Aspen 06

k-B

The magnetic field shifts the position of the resonance because of the ==

term in the potential:

In the absence of magnetic field, v escape isotropically

k
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The magnetic field shifts the position of the resonance because of the %

term in the potential:

. A
Down going neutrinos have higher energies

of the
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The asymmetry in the outgoing momentum

Ak B
~— ~0.01
k (1015(})

| AK, Segre; Barkovich et al.|
The core density p ~ 10 g/cm? determines the Am? ~ (3keV)?
Adiabaticity: the oscillation length

1 Am? |
Ao A ™ osn20) ~ 22
2 2k sin 260

must be smaller than (1) the scale height of density (2) the mean free path
of neutrinos. =

sin?0 < 10710
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The range of parameters:

T III| T T 1T III|
k Q,= 0.3 N
10
5
ﬁl -
o |
S
[ pulsar kick
L (resonant oscillations)
1IIII| 1 1 IIIIIII 1 1 IIIIIII 1 1 IIIIIII 1
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. 2
sino
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‘ Resonance (MSW) & off-resonance oscillations |

[keV]

mS
T~
N\

pulsar kick

IIII| | | IIIIII| | | IIIIII| | | IIIIII| | | | I |
1e-11 1e-10 1e-09 1e-08 1e-07
. 2
sin 6
[A.K., Segre, PL B396, 197 (1997); Fuller, A.K.,Mocioiu,Pascoli, PR D 68, 103002 (2003)]
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‘ Other predictions of the pulsar kick mechanism |

e Stronger supernova shock [Fryer, AK, ApJ, in press; astro-ph/0512033]

e No B — v correlation is expected because

— the magnetic field inside a hot neutron star during the first ten seconds
is very different from the surface magnetic field of a cold pulsar
— rotation washes out the x,y components

e Directional {2 — v correlation is expected, because

— the direction of rotation remains unchanged
— only the z-component survives
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Recombination ——y,
Reionization
Horizon of

Current Opticakey
Observations

Reionization
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Reionization
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‘ Reionization I

Aspen ’06

Observations of distant quasars, WMAP: IGM was reionized at red shift

Zp = 17X 5.

First stars can ionize gas, but it is hard to make stars so early.

Warm dark matter (gravitinos) could make matters worse:
suppress small structure.
What about sterile neutrinos?

e they are warm, but

e they decay and produce x-rays, and x-rays can ionize gas!
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‘ Photons from radiative decays I

Sterile neutrino in the mass range of interest have lifetimes longer than
the age of the universe, but they do decay:

\ Vo

Photons have energies m/2: X-rays. X-rays can ionize gas.
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Sterile neutrino decays: a discouraging estimate

0.001 ¢

10 20 50 100 200 500 1000

The fraction of ions is too small to explain the WMAP results...

...but it’s a much higher fraction than in the absence of sterile
neutrinos. lonization catalyzes formation of molecular hydrogen

production of molecular hydrogen speeds up gas cooling, halo collapse
and star formation!
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Molecular hydrogen

H-+ H — Hy;+~v — very slow!

In the presence of ions the following reactions are faster:

H"+H — Hj+7,
Hf+H — H,+H".

H™ catalyze the formation of molecular hydrogen!

Aspen ’06
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-16

k,, 10 cm /s

The fraction of molecular 7 L/\

h yd roge n f 0 260 400 600 800 10‘06

f = k() np (t) ze(t).

where k,,, is the rate shown
End result: H> production is enhanced at z ~ 100!

Sterile neutrino decays precipitate the early star formation. Stars can
reionize the universe by redshif z,. = 17 + 5 (WMAP)
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Theoretical point of view

The following Lagrangian describes:

e the Standard Model physics
e dark matter
e baryon asymmetry

Mgay _

L = Lsm + Us,o (10,7") Vs,a — Yoo H l_}aus,a — VS Vs,b + h.c.,

where H is the Higgs boson and L, (« = e, u, 7) are the lepton doublets.
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‘ Leptogenesis I

Consider the following lagrangian:

Mgay

L = Lsn + Us,q (20,7") Vs,a — YaaH Eal/s,a — VS o Vs,b T h.c.,

where H is the Higgs boson and L, (o = e, u, 7) are the lepton doublets.
The lightest of sterile neutrinos, v, 1 is the keV dark matter.

The other two sterile neutrinos, v, o and v 3 are heavier.

This lagrangian offers a simple scenario for leptogenesis.
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‘ A viable scenario for leptogenesis: I

e At least one of the vy 4, for example, v 3 has a large enough Yukawa
coupling to be in equilibrium at temperatures T' > 100 GeV. This species
is produced with zero asymmetry: L3 = 0.

e CP violation is present in the mixing matrix of the singlets. Neutrino
oscillations with CP violation produce a population of vy , with

Ll#ov LZ#Oa L3#Ov but Ly =L;+ L+ L3 =20

e The dark-matter neutrino, vs; is out of equilibrium at all times.
Sphalerons convert L, + L3 7% 0 into the baryon asymmetry.

[Akhmedov, Rubakov, Smirnov; Asaka, Shaposhnikov]
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Heavy sterile neutrinos can dilute and cool down DM

201

10:

Tremaine—Gunn (excluded)

107 10” 10” 10~ 10~
sin®26
Entropy increase by factor S, 1 < S < 100. [Asaka, AK, Shaposhnikov]
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‘ Conclusion I

e A sterile neutrino with keV mass and a small mixing is a viable dark
matter candidate, free of CDM problems.

e The same neutrino is emitted from a supernova with a sufficient
anisotropy to explain the pulsar velocities

e The same neutrino can boost the production of molecular hydrogen and
precipitate a rapid early star formation.

e A rather minimal extension of the Standard Model, the addition of three
sterile neutrinos explains all the present data, including dark matter,
the baryon asymmetry of the universe, the pulsar velocities, and
reionization
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